
Analysis of Simultaneous Multithreading
Implementations in Current

High-Performance Processors
Kamil Kedzierski1, Francisco J. Cazorla2, Mateo Valero1,2

Introduction

1Departamento de Arquitectura de Computadores,
Universidad Politécnica de Cataluña (UPC), Spain

2Barcelona Supercomputing Center
Centro Nacional de Supercomputación (BSC), Spain

Architectures

Performance

Conclusions
References

Resource POWER5 Intel Xeon
PC duplicated duplicated

Instruction Cache shared shared
ITLB shared duplicated
DTLB shared shared
BHT shared shared

Return Stack Buffer duplicated duplicated
Decode shared shared

Instruction Buffer/
uCode Queue duplicated duplicated

Group Formation shared -
Mapping/Rename shared duplicated

IQ shared partitioned
Scheduler - shared

Register Read shared shared
FUs shared shared

Store Queues duplicated partitioned
Register Write shared shared
GCT/Commit duplicated partitioned

This work has been supported by the Ministry of Science and Technology of Spain under contract TIN-2004-07739-C02-01 and grant AP2005-3776 (Kamil Kedzierski), the HiPEAC European Network of Excellence, an Intel fellowship, and an IBM fellowship.

Detailed pipeline view of the Intel Pentium 4 [Burns2002].

Additional stages in case
of cache miss — used to
fill Trace Cache
[Marr2002].

Power5 instruction pipeline (a) and data flow (b) [Sinharoy2005].

[Kalla2004] R. Kalla, B. Sinharoy, J. M. Tendler, ”IBM POWER5 Chip: A Dual-Core Multithreaded
Processor”, IEEE MICRO 2004, pages 40-47

[Sinharoy2005] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner “POWER5 sys-
tem microarchitecture”, IBM Journal of Research and Development 2005, pages 505-521

[Mathis2005] H. M. Mathis, A. E. Mericas, J. D. McCalpin, R. J. Eickemeyer, and S. R. Kunkel
“Characterization of simultaneous multithreading (SMT) efficiency in POWER5”, IBM
Journal of Research and Development 2005, pages 555-564

[Marr2002] Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David A. Koufaty, J. Alan
Miller, Michael Upton “Hyper-Threading Technology Architecture and Microarchitecture”,
Intel Technology Journal, Volume 6, Issue 1, 2002

[Burns2002] David Burns “Pre-Silicon Validation of Hyper-Threading Technology”, Intel Technology
Journal, Volume 6, Issue 1, 2002

[Kalla2003] Ron Kalla, BalaramSinharoy, Joel Tendler, ”Simultaneous Multi-threading Implementation
in POWER5”, A Symposium on High Performance Chips (HotChips), 19th August 2003,

[Hinton2001] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel.
“The microarchitecture of the Pentium 4 processor”, Intel Technology Journal, Volume 5,
Issue 1, 2001

[Merritt1999] Rick Merritt, “Designers cut fresh paths to parallelism”, EETimes
http://www.eetimes.com/story/OEG19991008S0014

[Cazorla2005] Francisco J. Cazorla Almeida, “Quality of Service for Simultaneous Multithreading
Processors (QoS for SMT Processors)”, PhD Thesis, DAC, UPC, 2005

 Current superscalar processors take advantage of Instruction Level Parallelism (ILP) from a single thread, which
allows them to execute several instructions during a clock cycle.
 However, the amount of a parallelism in one thread is limited due to control and data dependencies, what has
motivated the research on other forms of parallelism:
 ‐ Multiprocessor systems: several threads run in parallel at a given time on different sets of hardware
 resources, only sharing some levels of the cache hierarchy.
 ‐ Coarse‐grain systems: the architecture swaps to a different thread when a given thread experiences a
 long latency event, such as cache miss.
 ‐ Fine‐grain systems: the context switching occurs more often (in some implementations every clock
 cycle). In this processor the reason to undertake the context switching may not
 be necessarily long‐latency event.
 ‐ Simultaneous multithreading: the only case where the processor is able to issue instructions from the different
 threads in the same cycle.

What are the differences in SMT implementations?

How to implement SMT:
- sharing resources
- partitioning resources
- duplicating resources

Power5 Pentium 4

O-O-O Fetch Grouping IQ

Simplified pipeline view

O-O-O Fetch Trace
Cache Fill IQ

Simplified pipeline view

Power5 Pentium 4

Is SMT always the best choice?

Even beneficial in many cases for some programs SMT is counter
productive. Two threads requiring big caches and competing for the same
cache memory resource were limiting its performance. As the result, the
overall achieved performance was less than in the single-thread mode.

 Performance results of the
matrix multiply benchmark in

Power5 architecture
[Kalla2003].

Simultaneous multithreading is a solution to increase performance, which is commonly used in a processor implementation.
The progress of computational machines has reached the point, where the resources in current architectures may not be fully utilized due to
data and control dependency in a given workload. Thread Level Parallelism is a good answer on how to increase performance without
drastically increasing the resources.

Future work: power analysis of the SMT implementation in Power5‐like architecture (IBM’s Turandot Simulator).

A possible classification of multithreaded architectures
[Cazorla2005]

Conceptual view of the effects of priority on performance.
The performance increase is up to 41% [Sinharoy2005].

Average OLTP (left) and 3 different web server (right)
benchmarks performance on Xeon machine.

The performance gain varies from 16% to 28%
[Marr2002].

