

FRONT-END TOOLS FOR DYNAMIC
RECONFIGURATION IN FPGA DEVICES

K. KEDZIERSKI, J.M.MORENO-AROSTEGUI, J.CABESTANY
TECHNICAL UNIVERSITY OF CATALONIA, SPAIN

KEYWORDS: FPGA, Dynamic Reconfiguration

ABSTRACT: CAD environment for dynamic reconfiguration in FPGA devices has been depicted. The environment is
co-operating with the HDL (Hardware Description Language) tools currently available on the market. It leads a
designer from an input project division into a number of partitions till a synthesis process. The environment is a
collection of a few applications that form the basic interface between a designer and a target device. All of the
applications, that the environment includes, have been described in the paper, together with the design flow example.

INTRODUCTION

Although the possibility of implementing dynamically
reconfigurable logics exists, there is still a long way to
go in order to achieve standard design techniques for
these devices. This paper reports on the work that has
been done in order to create an environment, which
would lead the user to the final reconfiguration
process.
The Front-End Tools, FET, form the basic interface
between the designer and the FPGA device that is
going to use the dynamic reconfiguration. These CAD
tools are device independent, which means that they
produce that may be used by any device. To achieve
that, FET’s outputs should be next loaded to the Back-
End Tools, responsible for the final preparation of the
configuration bitstreams.

GLOBAL VIEW

To be able to understand the Front-End Tools
characteristic, one has to concentrate on the following
terms:
Dynamic reconfigurable FPGA is a field -
programmable gate array with a capability of changing
the behaviour of one part of its logic infrastructure
while the rest is running.
The static part is a part of an input design that is
active during the whole application runtime. It is
placed in the “static” area of a target device that is kept
intact all the time. In addition to its standard function,
it has to provide an infrastructure to load and unload
other (dynamic) parts of the design, which is system
scheduling, data management, and interface
management.
The dynamic parts (dynamic modules – d_modules)
are independent parts of the input design that need not
be active during the whole application runtime. They
share common areas (slots) inside a target device; this
is based on the assumption that they are not required to
run at the same time in parallel. They are loaded to and
unloaded from a target device as requested by the
system scheduler.

DCF file (Dynamic Constraint Format file, also called
constraint file) specifies the conditions under which
dynamic modules are loaded and unloaded to a FPGA
device. Moreover, this file describes data and interface
management characteristics.
Data management takes care of internal states of
d_modules. It saves all marked signals before a module
is unloaded and it restores them whenever the
corresponding d_module is loaded again. The designer
must specify these signals in the constraint file.
Interface management handles interfacing between
different dynamic parts and the static part. It holds the
last values of interface lines when the dynamic
modules that generated them are removed. The
designer must specify these interface lines in the
constraint file. From the FET point of view data and
interface management is done by means of the CUT
entities – units built of registers.

Design environment

Fig 1 presents a simplified view of the FET design
environment, where b lack squares signify tasks specific
to partial dynamic reconfiguration and requiring
dedicated tools – FET; ellipses signify files; squares
with rounded corners signify tasks identical to the ones
of the classical design flows, using “standard” tools .
At the beginning, the designer is able to specify the
DCF file as the FET’s input together with
synthesisable, static VHDL code, which is the
description of the design. DCF file is the description of
the constraints and it has been precisely des cribed in
[4].
As it may be observed in the Fig 1, the following
Front-End Tools may be distinguished:
Automatic Partitioning Tool. The tool relieves the
user in looking for the optimal partitioning solution. It
performs the detailed analysis of the individual
concurrent statements of the input VHDL code. It
estimates the resources required for the implementation
of these statements and extracts the time dependencies
among them. Using this information the tool proposes
to the user the optimal dynamic implementation of the
partitioned system. The tool may be also used via the

Manual Partitioning Tool. Automatic Partitioning Tool
has been precisely described in [7] and [8].

Fig 1 Front-End Tools design environment, simplified view.

Manual Partitioning Tool . The tool allows the user to
undertake the manual partitioning, also called the
constraints-driven partitioning, since the tool is able to
read the DCF file and to modify the design according
to the information found in this file. At the beginning,
the user loads the set of VHDL files. These files are
initially static. Now the user is able to decide which
parts of the code will become dynamic – they will be
assigned to Dynamic Modules. Moreover, a number of
constraints describing dynamic modules behaviour is
attached to the design by the user – at the end these
constraints will be saved as the DCF file. Therefore,
this tool enables to describe all the functionality from
the dynamic reconfiguration point of view.
VHDL Post-Processing Tool . The tool permits to
carry out a functional simulation of the dynamic
description resulting from a manual or automatic
partition using standard VHDL simulators. For the user
convenience, it has been built as a part of the
Configuration Controller Generator.
Configuration Controller Generator . The tool is able
to generate C code that may be later compiled in order
to provide a software controller for the dynamic
implementation of the system. Moreover, it is able to
generate the hardware, synthesisable VHDL
description of the configuration controller. At the end,
the generated VHDL files may be merged together in
the top-level file for the functional simulation (with the
cooperation with VHDL Post-Processing Tool) or for
the hardware implementation of the system.
VHDL Parser. There are two parsers implemented in
the Automatic Partitioning Tool and Manual
Partitioning Tool. In both cases, these parsers are
responsible for converting the input VHDL files into
the Internal Representation Format, IRF.

SYSTEM SCHEDULER

There are three possible ways of partitioning a design
for its implementation in dynamically reconfigurable
FPGA, depicted in the Fig 2:
Constraints-driven partitioning. This is done by
mean of the Manual Partitioning Tool. Here is where
the designer has most control over the partitioning
process, being able to define what part of the design
will remain static, all the dynamic modules that will be

present and the constraints that will condition the
loading or unloading of them.
Automatic partitioning. This is done by means of the
Automatic Partitioning Tool. This method has as its
input a static design that will be partitioned into area-
balanced, time-independent partitions that will be
executed sequentially in a dynamically reconfigurable
FPGA.
As it may be observed in the Fig 2, netlist converter is
the first entity that reads the input VHDL files in this
method. It is responsible for converting the input set of
files into a subset of VHDL containing only processes
with sensitivity list, to ease-up the task of the
partitioning algorithm. These processes are considered
by the algorithm as the elementary units that may be
moved between different partitions.
The area estimation of the VHDL processes from the
intermediate netlist format constitutes a fundamental
input for the partitioning algorithm, as what it primarily
tries to achieve are area-balanced and time-independent
partitions, or constrained size partitions (by mean of the
input DCF file).

Fig 2 System scheduling detailed view

Semi-automatic partitioning. This is the intermediate
mode between the two methods introduced previously.
The designer may start the automatic partitioning and
next modify it in the constraints-drive partitioning
mode, since Manual Partitioning Tool allows the user
to load the DCF file together with importing the
external dynamic modules. In the Fig 2, this is depicted
by means of the dashed line.

Manual Partitioning Tool

Fig 3 depicts general view of the constraints editor with
its main parts. The external inputs to the constraints
editor are a static VHDL description, and a set of
constraints – DCF file. The static description accepted
by the tool is a subset of VHDL code that is defined in
IEEE standard 1076.6. The designer needs to remember
that for all libraries used within the input VHDL
description, except for those defined by the IEEE, the
source files must be made available.
DCF Parser. The purpose of this entity is to process
the input DCF file, checking for errors and creating
a list of commands that are used later on the process
chain by the partitioner. Since loading the DCF file to
the tool is optional and partitioning algorithm is using

the DCF parser as well, DCF parser includes the DCF
editor. The task of this block is to allow the user to add
the constraints for the dynamic modules that are finally
going to be saved in the output DCF file. It is
important to distinguish these two DCF files: the input
DCF file is the base (optional) for the output one. The
output one will be used by next FET applications in the
design flow, since it contains information specific for
the dynamic reconfiguration.

Fig 3 Constraints editor general view. Shaded boxes

represent tasks while the other boxes represent some
form of data: inputs, outputs or intermediate results.

VHDL Parser. The task of the VHDL parser is to
process the input files representing the VHDL
description and to convert it into an Internal
Representation Format. An important assumption at
this stage is that the VHDL code is correct. Neither
syntactic nor semantic checks are performed here.
DCF Editor. This block allows both the designer and
the manual partitioner to describe the dynamic
behaviour of the project by the mean of the DCF
constraints. These constraints are going to be finally
saved in the output DCF file.

Fig 4 Detailed view of the partitioner. Shaded boxes

represent tasks while the other boxes represent inputs.

Partitioner. This is the core of the application. The
task of this block is to apply the commands from the
DCF parser to the IRF representation of the input
VHDL design, as shown in the Fig 4. Since the user
has the possibility of adding the constraints to the input
DCF file, which means in fact changing the loading
and unloading conditions for the dynamic modules
together with their content (modifications of the
dynamic reconfiguration information), this block is
able to modify the commands from the DCF parser or
to create them from the scratch by mean of the
cooperation with the DCF Editor. The partitioning task
is divided into several sub-tasks. At the beginning,
dynamic modules are created. It is worth mentioning
that all the VHDL design description that is not
included in the dynamic modules is initially static.
Data saving constraints are then implemented. It means
that special registers are defined in the static part of the
design. These flip-flops reflect dynamic module’s
outputs while they are in active mode, and maintain the
last value once they are deactivated. Next, the structure
of both the dynamic and static parts of the design needs

to be completed to reflect all the modifications done.
At the end, output VHDL files are formed.
Tool description. The Manual Partitioning Tool
permits the user to enter several VHDL files
corresponding to a static description of the design with
pointing at the top-level file, which puts all the files
together as components. Once the files are parsed, they
are represented graphically so that it is possible to
observe the overall hierarchy of the design. The tool
allows for the definition of different dynamic modules
in an output window. Once these dynamic modules are
defined, the user may assign part of the static
functionality to them just by dragging and dropping
objects belonging to the static description into the
dynamic mo dules previously defined. The user may set
constraints for the dynamic modules to specify the
conditions for loading/unloading functionality into the
dynamic reconfigurable FPGA. These conditions may
be time based (executed one time), frame based
(periodic) or signal event based (asynchronous).
Moreover, exclusive constraints between the dynamic
modules sharing the same area in the device may be
defined here. A file in DCF format containing the
constraints set by the user is also generated. Moreover,
constraint syntax checking functions have been also
designed, so that the user is informed if the constraints
defined correspond to the DCF syntax methodology,
defined in [[4]]. The tool generates the individual
VHDL files corresponding to the static part of the
design and to the dynamic modules defined, as well as
to the buffer resources (i.e. registers) managing the
communication between the dynamic modules and the
static part (cut entities).

Fig 5 Manual Partitioning Tool main view

There are two main windows in the main application
view, as it may be observed in the Fig 5. The one on
the left represents the static part of the design, while the
one on the right shows the dynamic one. After the files
are loaded to the tool, the graphical representation of
the VHDL description may be observed in the static
part of the design. Therefore, all the design is initially
static – the user is specifying which parts of the static
description should be moved to the dynamic one. All
the action that is required from the designer to divide
the initially static VHDL description into a number of
dynamic modules is to drag one of the concurrent
statements from the static part and drop it on the

module icon placed in the dynamic part. All the
necessary calculations and corresponding VHDL
source code generations are done by the tool.
There is a number of mechanisms implemented in the
Manual Partitioning Tool that allows the designer to
have the influence on the partitioning algorithm. It is
worth to enumerate the “Signal Management” and
“Automatic Partitioner”, among others. The first one
lets the user to change the default signal interface,
while the second one allows using the Automatic
Partitioning Tool directly from the application menu
functions.

CONFIGURATION CONTROLLER
GENERATOR

The Configuration Controller Generator, CCG, is
a collection of two tools: the VHDL Post-Processing
Tool (Functional Block of CCG) and the Configuration
Controller Generator core (Technology Dependent
Block of CCG). Fig 6 depicts the organization of the
CCG. There are two main blocks that the reader should
notice, among others: Functional Block, FB , and
Technology Dependent Block, TDB. The first one is in
charge of generating the functional description of the
configuration controller, while the second one takes
care, in addition to what the functional block does, of
specific characteristics from dynamic reconfigurable
FPGAs. The task of the configuration controller, that is
going to be generated by the CCG, can be decomposed
in the following sub-tasks: detection of reconfiguration
conditions (detects of the load and unload conditions
for every dynamic module, queues the reconfiguration
conditions, according to their appearance) and
reconfiguration of the device (applies data saving and
interface management constraints, accesses the
configuration data from external memory and
reconfigure the d_FPGA, apply data restoring).

Fig 6 Detailed organization of the Configuration Controller

Generator. FB means Functional Block, while TDB
means Technology Dependent Block

VHDL Post-Processing Tool – Functional
Block

The Functional Block of the CCG – the VHDL Post-
Processing Tool – generates a Functional

Configuration Controller that allows the designer to
perform the functional simulation of dynamic designs
using static simulators, with little effort. In this model,
the effect of dynamic reconfiguration is represented by
surrounding all dynamic modules’ inputs and outputs
with isolation switches that are controlled by Schedule
Control Modules, SCMs. The control of the isolation
switches is distributed among the SCMs, which
collectively represent a Functional Configuration
Controller, FCC.

Fig 7 Example design including the modifications done by

the VHDL Post-Processing Tool

The simulation strategy followed by the tool is inspired
in the Dynamic Circuit Switch technique introduced in
[0], [[2]], [[3]]. To be able to perform the simulation
depicted in the Fig 7, a mechanism has been
implemented which adds switches to the dynamic
modules. There are two types of generated switches: 1-
bit and n-bit, where n is the generic representing the
length of the signal. Fig 8 presents 1-bit switch and
TABLE 1 depicts how it is controlled – A and B ports
may be both inputs or outputs (one is input, the other is
output), as switch is bidirectional; for ON state
a resolved function from the IEEE 1164 VHDL
package body is used. The implementation of these
isolation switches is done by means of VHDL
descriptions.

Fig 8 1-bit switch structure. For n-bit switch, there are also

FUNC1 and FUNC2 input signals which controls all
bits together

TABLE 1 Explanation of the switch controlling

State FUNC2 FUNC1 A port B port
ON 0 1 Resolved Resolved
X 1 1 X X
Z 1 0 Z Z
Z 0 0 Z Z

The switch is able to transmit signal from its input to
output – it corresponds with the dynamic module
turned on, as well as it is able to stop the signal – it
corresponds with the dynamic module turned off.
Moreover, there is a possibility to model
reconfiguration by setting an unknown value to

a switch inputs/outputs (and inputs or outputs of
a dynamic module at the same time). To manage the
switch two control signals are provided: FUNC1 and
FUNC2. These signals have to be decoded and this
determines the state of the switch, as it is presented in
the TABLE 1.
The VHDL Post-Processing Tool needs as its inputs
VHDL files containing dynamic modules description;
cut entities description together with static part of the
design. Moreover, it requires a DCF file to be able to
understand the dynamic behaviour of the design – all
of these files are produced by the Manual Partitioning
Tool. As the result, the application generates a VHDL
description of the FCC, switches used to isolate the
dynamic modules, these modules with added switches
as components, top entity putting everything together
and model simulation script file (*.do). Moreover, the
tool generates a set of internal configuration signals,
which are useful to assert in which state the generated
controller actually is.

Technology Dependent Block

This block is in charge of the generation of the Reconf
Interface – an interface between the static part of the
design interface (Application Interface), FPGA device
interface (Reconfiguration Interface) and Isolation
Switches (described previously, used for verification
purposes in this case). Fig 9 shows the Configuration
Controller Generator design environment view. Both
static part and dynamic modules are the inputs for the
CCG, while Reconf Interface is its output. Isolation
switches are used only for verification purposes.

Fig 9 Configuration Controller Generator design

environment

One may distinguish the following entities as a part of
the Reconf Interface, as it is depicted in the Fig 10:
Event Detector . This block reflects the conditions for
loading or unloading the dynamic modules as specified
in the DCF file relative to the design.
Sequential Scheduler. This entity is responsible for
sequentially loading dynamic bitstreams accordingly to
the events detected by the event detector.
Physical Interface. This entity is responsible for
managing internal or external reconfiguration ports of
the D_FPGA and internal/external bitstream memory.
The part of the interface that is communicating with
the FPGA is device dependent.

Physical Configuration Controller. This entity is
responsible for sequentially requesting all the bitstream
data of the bitstream associated to the bitstream ID
requested by the Sequential Scheduler. It is also
responsible for reading the start and end pointers of the
bitstream to load. This is the main configuration
controller part that is to be implemented in the
hardware.

Fig 10 Reconf Interface detailed view

The Physical Configuration Controller has two running
modes: an initialization mode and a run-time mode.
During the first one, the PCC has to load on the device
the static part plus some dynamic modules. In the run-
time mode, the PCC has to monitor a set of signals and
detect the triggering events for the loading and
unloading of dynamic modules. Once these events are
detected the configuration controller proceeds to load
the dynamic modules and to manage the context data
and interface data management.
The Technology Dependent Block has the same inputs
as the Functional one, since they are implemented in
the same tool. The application generates a PCC
description in C code (for an external configuration
controller, in this case the controller is represented by
a set of instructions to be executed on an external
micro -controller) and VHDL description of the Reconf
Interface, described above.

DESIGN FLOW EXAMPLE

Fig 11 presents the example of the input VHDL design
that may be loaded to the Manual Partitioning Tool,
since it is the first tool in the presented design
methodology. The “Px” circles represent VHDL
processes with their inputs and outputs, where x is
a natural number. As it may be observed there, static
description of the project has three input signals with
one output.

Fig 11 Example input VHDL design

Fig 12 depicts the situation after Manual Partitioning
Tool modifications. There are two dynamic modules
set (d_module_1 and d_module_2), both of them with
two processes. Moreover, a cut entity has been created,

since the output of the dynamic module 1 is an input
for the dynamic module 2 (data management needs to
be undertaken). The initial static design interface
depicted in the Fig 11 has been extended to the
interface between static and dynamic parts of the
design. The output VHDL files of the Manual
Partitioning Tool should be next loaded to the
Configuration Controller Generator.

Fig 12 Modification done by the Manual Partitioning Tool

Fig 13 depicts only one possible modification done by
the Configuration Controller Generator – the design
preparation for the functional simulation. In this case
the Functional Configuration Controller (FCC) is
responsible both for switch (S) and cut entities (CUT)
controlling according to the event signals. Event
signals may be the inputs or outputs of the static part of
the project, or inputs of the top level file, since all of
the depicted files will be merged at the end to the top
level file.

Fig 13 Modification done by the Configuration Controller

Generator, Functional Block

CONCLUSION

The main goal of this work was a presentation of the
Front-End Tools for dynamic reconfigurable FPGA
devices. The developed environment forms the basic
interface between the designer and the device. It allows
the user to decide in details about the dynamic
reconfiguration characteristic. At the beginning, it is
possible to use both automatic and manual partitioning
algorithm in the system scheduler. The user may
simulate the dynamic functionality of the system using
the currently available static simulators. It is possible
to generate the configuration controller that is going to
be implemented in the hardware or used for functional
simulation. At the end, all the project’s files may be
merged together in one top-level file.

The current efforts are concentrated on the integration
of the presented tools into one application, IFDYR –
Integrated Front-end for DYnamic Reconfiguration. It
would ease up the design flow from the user’s point of
view. Moreover, the application could be fully
parameterized, which means that the designer would
have fully influence on project details, such as
generated signals naming, to enumerate only the basic
example.

THE AUTHORS

MSc. Kamil Kedzierski, Prof. Juan Manuel Moreno-
Arostegui and Prof. Joan Cabestany are with the
Advanced Hardware Architecture Group, Department
of Electronic Engineering, Technical University of
Catalonia, c/Jordi Girona 1-3, Barcelona, SPAIN

REFERENCES

[1] J. Stockwood, P. Lysaght, “A Simulation Tool for

Dynamically Reconfigurable Field Programmable
Gate Arrays”, IEEE Transactions on VLSI
Systems, 4-3 (1996), 381 -390

[2] G. McGregor, P. Lysaght, “Extending Dynamic
Circuit Switching to Meet the Challenges of New
FPGA Architectures”, Field Programmable Logic
and Applications, Springer-Verlag (1997)

[3] I. Robertson, J. Irvine, P. Lysaght, D. Robinson,
“Improved Functional Simulation of Dynamically
Reconfigurable Logic”, Field Programmable Logic
and Applications Lecture Notes in Computer
Science Vol. 2438, Springer-Verlag (2002), 152-
161

[4] K. Kedzierski, J.M. Moreno, J. Cabestany,
“Constraints Editor, Technical Requirement
Specification”, UPC (2002), available through
www.reconf.org

[5] K. Kedzierski, J.M. Moreno, J. Cabestany, “VHDL
Post-Processing Tool. Technical Requirement
Specification”, UPC (2002), available through
www.reconf.org

[6] K. Kedzierski, J.M. Moreno, J. Cabestany,
“Configuration Controller Generator. Technical
Requirement Specification”, UPC (2002),
available through www.reconf.org

[7] R. Kielbik, J.M. Moreno, A. Napieralski, T.
Szymanski, "High-Level Partitioning for
Dynamically Reconfigurable Logic", Proceedings
of the 7th International Conference Mixed Design
of Integrated Circuits and Systems
(MIXDES'2000), 171-174, Gdynia, Poland, June
15-17, 2000

[8] R. Kielbik, J.M. Moreno, A. Napieralski, G.
Jablonski, T. Szymanski, "High-Level Partitioning
of Digital Systems Based on Dynamically
Reconfigurable Devices", Field-Programmable
Logic and Applications. Reconfigurable
Computing is Going Mainstream, M. Glesner, P.
Zipf, M. Renovell (eds.), pp. 271-280, Springer-
Verlag, Montpellier, France, September 2-4, 2002

